Two Discrete Log Algorithms for Super-Anomalous Elliptic Curves and Their Applications

نویسندگان

  • Noboru KUNIHIRO
  • Kenji KOYAMA
چکیده

Z/nZ (n = ∏k i=1 pi ei ) are defined by extending anomalous elliptic curves over a prime filed Fp. They have n points over a ring Z/nZ and pi points over Fpi for all pi. We generalize Satoh-Araki-Smart algorithm [10], [11] and Rück algorithm [9], which solve a discrete logarithm problem over anomalous elliptic curves. We prove that a “discrete logarithm problem over super-anomalous elliptic curves” can be solved in deterministic polynomial time without knowing prime factors of n. key words: elliptic curve discrete logarithm problem, superanomalous elliptic curves, deterministic polynomial time algorithm

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

An Efficient Threshold Verifiable Multi-Secret Sharing Scheme Using Generalized Jacobian of Elliptic Curves

‎In a (t,n)-threshold secret sharing scheme‎, ‎a secret s is distributed among n participants such that any group of t or more participants can reconstruct the secret together‎, ‎but no group of fewer than t participants can do‎. In this paper, we propose a verifiable (t,n)-threshold multi-secret sharing scheme based on Shao and Cao‎, ‎and the intractability of the elliptic curve discrete logar...

متن کامل

Efficient elliptic curve cryptosystems

Elliptic curve cryptosystems (ECC) are new generations of public key cryptosystems that have a smaller key size for the same level of security. The exponentiation on elliptic curve is the most important operation in ECC, so when the ECC is put into practice, the major problem is how to enhance the speed of the exponentiation. It is thus of great interest to develop algorithms for exponentiation...

متن کامل

Super-Isolated Elliptic Curves and Abelian Surfaces in Cryptography

We call a simple abelian variety over Fp super-isolated if its (Fp-rational) isogeny class contains no other varieties. The motivation for considering these varieties comes from concerns about isogeny based attacks on the discrete log problem. We heuristically estimate that the number of super-isolated elliptic curves over Fp with prime order and p ≤ N , is roughly Θ̃( √ N). In contrast, we prov...

متن کامل

Trapdooring Discrete Logarithms on Elliptic Curves over Rings

This paper introduces three new probabilistic encryption schemes using elliptic curves over rings. The cryptosystems are based on three specific trapdoor mechanisms allowing the recipient to recover discrete logarithms on different types of curves. The first scheme is an embodiment of Naccache and Stern’s cryptosystem and realizes a discrete log encryption as originally wanted in [23] by Vansto...

متن کامل

A p-adic Height Function Of Cryptanalytic Significance

It is noted that an efficient algorithm for calculating a p-adic height could have cryptanalytic applications. Elliptic curves and their generalizations are an active research topic with practical applications in cryptography [1], [2], [3]. If E is an elliptic curve defined over a finite field Fp, where p is prime, and if P and Q are points on the curve E such that Q = nP , then the elliptic cu...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2000